翻訳と辞書
Words near each other
・ Corn whiskey
・ Corn, Lot
・ Corn, Oklahoma
・ Corn-fed
・ Corn-free diet
・ Corna (disambiguation)
・ Corna (moth)
・ Corna Imagna
・ Corna Mara
・ Corna Trentapassi
・ Cornaa railway station
・ Cornac
・ Cornac, Lot
・ Cornacates
・ Cornacchia
Cornacchia's algorithm
・ Cornaceae
・ Cornada
・ Cornafean GAA
・ Cornafulla
・ Cornago
・ Cornal Hendricks
・ Cornalba
・ Cornald Maas
・ Cornale
・ Cornale e Bastida
・ Cornales
・ Cornalin d'Aoste
・ Cornallis
・ Cornallis gracilipes


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cornacchia's algorithm : ウィキペディア英語版
Cornacchia's algorithm
In computational number theory, Cornacchia's algorithm is an algorithm for solving the Diophantine equation x^2+dy^2=m, where 1\le d and ''d'' and ''m'' are coprime. The algorithm was described in 1908 by Giuseppe Cornacchia.
==The algorithm==
First, find any solution to r_0^2\equiv-d\pmod m (perhaps by using an algorithm listed here); if no such r_0 exist, there can be no primitive solution to the original equation. Without loss of generality, we can assume that (if not, then replace with , which will still be a root of ). Then use the Euclidean algorithm to find r_1\equiv m\pmod, r_2\equiv r_0\pmod and so on; stop when r_k<\sqrt m. If s=\sqrt is an integer, then the solution is x=r_k,y=s; otherwise there is no primitive solution.
To find non-primitive solutions where , note that the existence of such a solution implies that divides (and equivalently, that if is square-free, then all solutions are primitive). Thus the above algorithm can be used to search for a primitive solution to . If such a solution is found, then will be a solution to the original equation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cornacchia's algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.